Generalized Excited Random Walk in Bernoulli Environment

Probability Seminar IM-UFRJ

Rodrigo Barreto Alves (FGV-EMAp)

Joint work with Giulio Iacobelli (IM-UFRJ) e Glauco Valle (IM-UFRJ)

05/09/2022

2 [Main Results for the](#page-14-0) p_n -GERW

Excited random walk (ERW) is a model introduced by Benjamini and Wilson '03. Also called Cookie Random Walk.

It's a discrete time RW in \mathbb{Z}^d , $d \geq 2$ (starting from the origin).

- It depends on a fixed parameter $\delta \in (1/2, 1]$.
- At the first visit to a site, it will jump in the following way:

$$
p(x, e_1) = \delta/d, \quad p(x, -e_1) = (1 - \delta)/d
$$

and $\forall i \in \{2, 3, \ldots, d\}$

$$
p(x, \pm e_i) = 1/2d
$$

On an already visited site, the RW jumps to any nearest neighbor with uniform probability.

Benjamini and Wilson '03 proved that ERW in \mathbb{Z}^d , $d \geq 2$ is transient to the right

$$
\lim_{n \to \infty} X_n \cdot e_1 = \infty \quad \text{a.s..}
$$

Furthermore, they also show that, if $d \geq 4$, ERW is ballistic to the right

$$
\liminf_{n \to \infty} \frac{X_n \cdot e_1}{n} > 0 \quad \text{a.s..}
$$

Subsequent results:

- Kozma '03 and '05 extended the proof of ballisticity for ERW to $d = 3$ and $d = 2$, respectively.
- Bérnard and Ramirez '07 proved a Law of Large Numbers and a Central Limit Theorem for ERW in dimension $d \geq 2$.

The proofs of the transience to the right, the Law of Large Numbers and the Central Limit Theorem, rest upon two important ingredients.

- Couple the ERW with the SRW.
- Tan points for the SRW.

A tan point in $d = 2$ is a site $x \in \mathbb{Z}^2$ such that x is the first site of ${x + ke_1; k > 0}$ visited by the SRW.

A more robust technique was developed by Menshikov, Popov, Ramirez and Vachkovskaia '12. The model is a discrite time process in \mathbb{Z}^d , $d \geq 2$ and they considered the following:

- on already visited sites the process behaves like a d-dimensional martingale with bounded jumps (rather than a SRW),
- on the first time a site is visited the process has bounded jumps, satisfies UEC and drift condition in an arbitrary direction ℓ .

They call this model generalized excited random walk (GERW) and they showed that GERW with a drift condition in direction ℓ , is ballistic in that direction.

Let $X = \{X_n\}_{n\geq 0}$ be a \mathbb{Z}^d valued process, with $d \geq 2$, $X_0 = 0$ and adapted to a filtration $\mathcal{F} = {\mathcal{F}_n}_{n>0}$.

Condition I: There exists a constant $K > 0$ such that $\sup_{n\geq 0}||X_{n+1}-X_n|| < K$ on every realization.

We have that $\pi = {\{\pi(x)\}}_{x \in \mathbb{Z}^d} \in [0,1]^{\mathbb{Z}^d}$ is a random element where the marginals are Uniform in $[0, 1]$ and independents. We fix a sequence ${p_n}_{n\geq 1}$, with $p_n \in (0,1]$. Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n, \pi(X_1), \ldots, \pi(X_n))$ and $\ell \in \mathbb{S}^{d-1}$.

Condition II: There exists a $\lambda > 0$ such that:

• on the event $\{X_k \neq X_n$, for all $k < n\}$,

$$
\mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n] \cdot \ell \ge \lambda , \qquad \text{if } \pi(X_n) \le p_n ,
$$

$$
\mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n] = 0 , \qquad \text{if } \pi(X_n) > p_n .
$$

• on the event $\{\exists k < n \text{ such that } X_k = X_n\},\$

$$
\mathbb{E}[X_{n+1}-X_n|\mathcal{F}_n]=0.
$$

The Model

Condition III: There exist $h, r > 0$ such that;

• Uniformly elliptic in direction ℓ : for all n,

$$
\mathbb{P}\left[\left(X_{n+1}-X_n\right)\cdot\ell > r|\mathcal{F}_n\right] \ge h\;, \tag{UE1}
$$

• Uniformly elliptic on the event $\{ \mathbb{E}[X_{n+1} - X_n | \mathcal{F}_n] = 0 \}$: on $\{\mathbb{E}[X_{n+1}-X_n|\mathcal{F}_n]=0\}$, for all $\ell' \in \mathbb{S}^{d-1}$, with $||\ell'||=1$,

$$
\mathbb{P}\left[\left(X_{n+1} - X_n\right) \cdot \ell' > r | \mathcal{F}_n\right] \ge h \ . \tag{UE2}
$$

We will call X a p_n -GERW.

Let $\{\eta(X_0) = \infty\}$ be the event in which the process X never returns to the origin in the drift direction.

Theorem

Let X be a p_n -GERW in direction ℓ , in \mathbb{Z}^d with $d \geq 2$, where $p_n = (q_0 + n)^{-\beta}$, with $\beta < 1/6$, q_0 is a non negative integer. There exists $\psi > 0$ depending on the parameters of the model such that

$$
\mathbb{P}\left[\eta(X_0)=\infty\right] \geq \mathbb{P}\left[X_n \cdot \ell > 0 \text{ for all } n \geq 1\right] \geq \psi.
$$

Writing p_n -GERW

Let ${X_n}_{n>0}$ be a p_n -GERW in direction ℓ and ${U_i}_{i>1}$ a sequence of i.i.d. random variables with uniform distribution in [0, 1]. Denote the event $E_i := \{ \exists k < i \text{ such that } X_k = X_i \}$ and $E_0 := \emptyset$.

$$
X_n = \sum_{i=1}^n (X_i - X_{i-1})
$$

=
$$
\sum_{i=1}^n (1_{\{E_{i-1}\}}\xi_i + 1_{\{E_{i-1}^c\}}1_{\{U_i > p_i\}}\xi_i + 1_{\{E_{i-1}^c\}}1_{\{U_i \le p_i\}}\gamma_i).
$$

=
$$
\sum_{i=1}^n (\xi_i + 1_{\{E_{i-1}^c \cap \{U_i \le p_i\}\}}\gamma_i - 1_{\{E_{i-1}^c \cap \{U_i \le p_i\}\}}\xi_i).
$$

We set $\{\xi_i, \mathcal{F}_i\}_{i\geq 1}$ is an increment of a *d*-martingale with zero mean and $\{\gamma_i, \mathcal{F}_i\}_{i\geq 1}$ is a random vector such that $\mathbb{E}[\gamma_i \cdot \ell | \mathcal{F}_{i-1}] \geq \lambda$ for all $i \geq 1$. We set a polynomial decay: $p_n = Cn^{-\beta} \wedge 1$ with $\beta > 0$ and $C > 0$.

A weaker version of the p_n -GERW (p_n -WGERW)

Denote $C = ((c_{i,j})$ a continuous, $d \times d$ matrix-valued real function, defined in [0, ∞), satisfying $C(0) = 0$ and defined in $[0, \infty)$, satisfying $C(0) = 0$ and
 $\sum_{i,j=1}^{d} (c_{i,j}(t) - c_{i,j}(s)) \alpha_i \alpha_j \ge 0$ for any $\alpha \in \mathbb{R}^d$, $t > s \ge 0$. Condition I*:

i) For all $k \ge 1$ and $\theta < \beta - 1/2$, where $\beta > 1/2$, we have

$$
\sup_{k\ge 1}\frac{\mathbb{E}[\|\gamma_k\|]}{k^\theta}<\infty\quad\text{and}\quad \sup_{k\ge 1}\frac{\mathbb{E}[\|\xi_k\|]}{k^\theta}<\infty\;.
$$

ii) When the process behaves like $\{\xi_i\}_{i\geq 0}$

$$
\frac{1}{n}\sum_{i=1}^{\lfloor nt \rfloor} \xi_i \xi_i^T \to C(t) \quad \text{as } n \to \infty ,
$$

in probability and

$$
\lim_{k \to \infty} k^{-1/2} \mathbb{E} \left[\sup_{1 \le i \le k} \|\xi_i\| \right] = 0.
$$

Main Result for the p_n -WGERW

We define the following process

$$
\hat{B}_t^n = \frac{X_{\lfloor nt \rfloor}}{n^{1/2}} + (nt - \lfloor nt \rfloor) \frac{(X_{\lfloor nt \rfloor + 1} - X_{\lfloor nt \rfloor})}{n^{1/2}}.
$$

 $C_{\mathbb{R}^d}[0,T]$ with uniform metric and $C_{\mathbb{R}^d}[0,\infty)$ with the metric $\rho(f,g):=\sum_{k=1}^\infty \frac{1}{2^k}$ $\frac{1}{2^k} \sup_{0 \le t \le k} (||f(t) - g(t)|| \wedge 1).$

Theorem

Let X be a p_n -WGERW in direction ℓ , in \mathbb{Z}^d , with $d \geq 2$, $p_n = Cn^{-\beta} \wedge 1$, with $\beta > 1/2$. Then \hat{B}^n converges in distribution to a unique, in distribution, process with independent Gaussian increments with sample paths in $C_{\mathbb{R}^d}[0,\infty)$.

Let X be a p_n -GERW in direction ℓ

$$
X_n = \sum_{i=1}^n (\xi_i + 1_{\{E_{i-1}^c \cap \{U_i \le p_i\}\}} \gamma_i - 1_{\{E_{i-1}^c \cap \{U_i \le p_i\}\}} \xi_i).
$$

If the sequence $\{\xi_i\}_{i\geq 1}$ is i.i.d. with zero mean and finite variance and $\{\gamma_i\}_{i\geq 1}$ is also i.i.d. with finite variance, then X is p_n -ERW in the direction ℓ .

The Range of p_n -ERW in $d > 2$ and $\beta = 1/2$

Given a process $\{X_n\}_{n\geq 0}$ on the lattice \mathbb{Z}^d , we denote its *range* at time n_{\rm} by,

$$
\mathcal{R}_n^X = \{ x \in \mathbb{Z}^d : X_k = x \text{ for some } 0 \le k \le n \} .
$$

Let π_d be the probability of a random walk with i.i.d. increments never returning to the origin.

Proposition

Let X be a p_n -ERW in direction ℓ , in \mathbb{Z}^d with $d \geq 2$, $p_n = Cn^{-1/2} \wedge 1$. Then, we have that

$$
\mathbb{P}\left[|\mathcal{R}_n^X|\leq \delta n\right]\rightarrow 1\quad as\ n\rightarrow\infty\,,
$$

for every $\delta > \pi_d$ corresponding to $\{\xi_i\}_{i>0}$.

Theorem

Let X be a p_n -ERW in direction ℓ , in \mathbb{Z}^d with $d = 2$, $p_n = Cn^{-1/2} \wedge 1$. Then \hat{B}^n converges in distribution to a 2-dimensional Brownian Motion in $C_{\mathbb{R}^2}[0,\infty)$.

Main Result for the p_n -ERW

Define the set $D_k \subset \{e_1, \ldots, e_d\}$, where $d \geq 4$ and $|D_k| = k$, with $1 \leq k \leq d-3$.

Let $\ell_{D_k} \in \mathbb{S}^{d-1}$, such that $\ell_{D_k} = \sum_{i=1}^k \alpha_i x_i$, where $\alpha_i \in [0,1]$ and $x_i \in D_k$, both for all $1 \leq i \leq k$.

Theorem

Let X be a p_n -ERW in direction $\ell_{D_{k}}$, in \mathbb{Z}^d with $d \geq 4$, $p_n = Cn^{-1/2} \wedge 1$. Then the process \hat{B}^n is tight in $C_{\mathbb{R}^d}[0,\infty)$ and there exists a Brownian Motion W. such that for every limit point Y. of the process \hat{B}^n it holds that

$$
W_t \cdot \ell_{D_k} + c_1 \sqrt{t} \preceq Y_t \cdot \ell_{D_k} \preceq W_t \cdot \ell_{D_k} + c_2 \sqrt{t},
$$

where $c_2 > c_1 > 0$.

Meaning of our result for the p_n -ERW

Every limit point of the p_n -ERW in direction ℓ_{D_k} suitably rescaled will be in a kind a "cone" region, with high probability.

Figure 1: "Cone" region representation around the direction ℓ_{D_k} .

Idea of Proof of the convergence in distribution of the p_n -WGERW

For simplicity

$$
B^n := \frac{X_{\lfloor n \cdot \rfloor}}{n^{1/2}}.
$$

Let X be a p_n -WGERW in direction $\ell, d \geq 2$ and with $\beta > 1/2$. Then

$$
B^n \xrightarrow{\mathcal{D}} Z \quad \text{as } n \to \infty \,,
$$

where Z is a unique, in distribution, process with independent Gaussian increments.

Idea of Proof of the convergence in distribution of the p_n -WGERW

• We write the process

$$
B_t^n = \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i + \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} 1_{\{E_{i-1}^c \cap \{U_i \le i^{-\beta}\}\}} (\gamma_i - \xi_i).
$$

- By Condition I^{*} we have $n^{-1} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i \xi_i^T$ $\stackrel{\mathcal{P}}{\rightarrow} C(t)$ as $n \rightarrow \infty$ and $k^{-\frac{1}{2}} \mathbb{E} \left[\sup_{1 \leq i \leq k} \|\xi_i\| \right] \to 0 \text{ as } k \to \infty.$
- Then by Theorem in Ethier and Kurtz '09 we obtain

$$
\frac{1}{n^{1/2}}\sum_{i=1}^{\lfloor n\cdot\rfloor}\xi_i \xrightarrow{\mathcal{D}} Z. \quad \text{as } n \to \infty.
$$

Idea of Proof of the convergence in distribution of the p_n -WGERW

- We define $D_{\lfloor n\cdot\rfloor}^{\gamma} := \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt\rfloor} 1_{\{E_{i-1}^c\}} 1_{\{U_i \leq i^{-\beta}\}} \gamma_i$, a process in $C_{\mathbb{D}d}[0,T]$
- We have

$$
\mathbb{P}\left(\sup_{0\leq t\leq T}\left\|D_{\lfloor nt\rfloor}^{\gamma}\right\| > \varepsilon\right) \leq \mathbb{P}\left(\sum_{i=1}^{\lfloor nT\rfloor}\left\|1_{\{U_i\leq i-\beta\}}\gamma_i\right\| > \varepsilon n^{\frac{1}{2}}\right)
$$

$$
\leq \frac{1}{n^{1/2}\varepsilon}\sum_{i=1}^{\lfloor nT\rfloor}\frac{1}{i^{\beta}}\mathbb{E}\left[\|\gamma_i\|\right] \leq \frac{1}{n^{1/2}\varepsilon}\sum_{i=1}^{\lfloor nT\rfloor}\frac{\mathbb{E}\left[\|\gamma_i\|\right]}{i^{\theta}} \times \frac{1}{i^{\beta-\theta}}.
$$

By Condition I^{*} we obtain that D_{\perp}^{γ} $|nt|$ $\stackrel{\mathcal{P}}{\rightarrow} 0$, in the space $C_{\mathbb{R}^d}[0,T]$ for all $T > 0$.

Idea of the proof of the upper bound to the range of p_n -ERW in $d > 2$ and $\beta = 1/2$

We want to prove that $\mathbb{P}[|\mathcal{R}_n^X| < \delta n] \to 1$ as $n \to \infty$ for every $\delta > \pi_d$ corresponding to $\{\xi_i\}_{i>0}$.

• For an $\varepsilon \in (0,1)$ we have

- We think in each time window like $[N_1 + 2, N_2]$ has a independent random walk Y with i.i.d. increments. Each one with its range in this time window.
- Then we use the ranges of these processes to upper bound the range of the p_n -ERW.

For simplicity

$$
B^n_{\cdot} := \frac{X_{\lfloor n \cdot \rfloor}}{n^{1/2}} \, .
$$

Let X be a p_n -ERW in direction ℓ , $d = 2$ and with $\beta = 1/2$. Then

$$
B^n \xrightarrow{\mathcal{D}} W \quad \text{as } n \to \infty \,,
$$

where W is a Brownian Motion.

• We write the process

$$
B_t^n = \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i + \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} 1_{\{E_{i-1}^c \cap \{U_i \le i^{-1/2}\}\}} (\gamma_i - \xi_i).
$$

- By Donsker's Theorem $\frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor n \rfloor} \xi_i \stackrel{\mathcal{D}}{\to} W$ as $n \to \infty$, where W is a Brownian Motion with zero mean vector and covariance matrix $\mathbb{E}[\xi_1 \xi_1^T]$.
- Denote the set $K_n := \{i \in \{1, 2, \ldots, n\} : 1_{\{E_{i-1}^c\}} 1_{\{U_i \leq i^{-1/2}\}} = 1\}$ and the sequence *F*-stopping times $\{\tau_i\}_{i>1}$, corresponding to the times the p_n -ERW visits a new site.

We rewrite the process

$$
B_t^n = \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i + \frac{|K_{\lfloor nt \rfloor}|}{n^{1/2}} \sum_{i \in K_{\lfloor nt \rfloor}} \frac{(\gamma_i - \xi_i)}{|K_{\lfloor nt \rfloor}|}.
$$

By the definition of $K_{\lfloor nt \rfloor}$ we have

$$
|K_{\lfloor nt \rfloor}| = \sum_{i=1}^{\lfloor nt \rfloor} 1_{\{E_{i-1}^c\}} 1_{\{U_i \leq i^{-1/2}\}} = \sum_{j=1}^{|\mathcal{R}_{\lfloor nt \rfloor}^X|} 1_{\{U_{\tau_j} \leq \tau_j^{-1/2}\}} \preceq \underbrace{\sum_{i=1}^{|\mathcal{R}_{\lfloor nt \rfloor}^X|} 1_{\{U_i \leq i^{-1/2}\}}}_{|J_{\lfloor nt \rfloor}|:=}.
$$

Lemma

We have that the process $|J_{n}|/n^{1/2}$ converges in $C_{\mathbb{R}}[0,\infty)$ to the identically zero function in probability.

Rodrigo B. Alves [GERW in Bernoulli environment](#page-0-0) May/2022 26

For any $\varepsilon > 0$, we set the event $G := \{ |J_{\lfloor nT \rfloor}| > \varepsilon \sqrt{n} \}$. Then for a $\delta > 0$, we have that

$$
\mathbb{P}\left[\sup_{0\leq t\leq T}|J_{\lfloor nt\rfloor}| > \varepsilon\sqrt{n}\right] =
$$
\n
$$
= \mathbb{P}[G \cap \{|\mathcal{R}^{X}_{\lfloor nT\rfloor}| > \delta\lfloor nT\rfloor\}] + \mathbb{P}[G \cap \{|\mathcal{R}^{X}_{\lfloor nT\rfloor}| \leq \delta\lfloor nT\rfloor\}]
$$

- Since $|K_{\lfloor n\cdot\rfloor}|\preceq |J_{\lfloor n\cdot\rfloor}|$, we obtain $|K_{\lfloor n\cdot\rfloor}|/n^{1/2}\stackrel{\mathcal{P}}{\rightarrow} 0$ as $n\to\infty$ in the space $C_{\mathbb{R}}[0,\infty)$.
- As $n \to \infty$ either $|K_{\lfloor nt \rfloor}| < \infty$ a.s. or $|K_{\lfloor nt \rfloor}| = \infty$ a.s..

For simplicity

$$
B^n := \frac{X_{\lfloor n \cdot \rfloor}}{n^{1/2}}.
$$

Let X be a p_n -ERW in direction ℓ_{D_k} , $d \geq 4$ and with $\beta = 1/2$. Then

$$
W_t \cdot \ell_{D_k} + c_1 \sqrt{t} \preceq Y_t \cdot \ell_{D_k} \preceq W_t \cdot \ell_{D_k} + c_2 \sqrt{t},
$$

where $c_2 > c_1 > 0$.

• We write the process

$$
B_t^n = \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i + \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} 1_{\{E_{i-1}^c \cap \{U_i \le i^{-1/2}\}\}} (\gamma_i - \xi_i)
$$

Let us set $D_{\lfloor nt \rfloor} := \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} 1_{\{E_{i-1}^c \cap \{U_i \leq i^{-1/2}\}\}} (\gamma_i - \xi_i).$ The process $D_{|n|}$ is tight in $C_{\mathbb{R}^d}[0,\infty)$.

• Note that

$$
\sum_{i=n-|\mathcal{R}_{\lfloor nt\rfloor}^X|+1}^{\lfloor nt\rfloor}1_{\{U_i\leq i^{-1/2}\}}\preceq \sum_{j=1}^{|\mathcal{R}_{\lfloor nt\rfloor}^X|}1_{\{U_{\tau_j}\leq \tau_j^{-1/2}\}}=|K_{\lfloor nt\rfloor}|
$$

$$
\sum_{i=\lfloor nt \rfloor - |\mathcal{R}_{\lfloor nt \rfloor}^X|+1}^{\lfloor nt \rfloor} 1_{\{U_i \leq i^{-1/2}\}} = \sum_{i=1}^{\lfloor nt \rfloor} 1_{\{U_i \leq i^{-1/2}\}} - \underbrace{\sum_{i=1}^{\lfloor nt \rfloor - |\mathcal{R}_{\lfloor nt \rfloor}^X|} 1_{\{U_i \leq i^{-1/2}\}}}_{:=|F_{\lfloor nt \rfloor}|}.
$$

• We rewrite the process

$$
B_t^n = \frac{1}{n^{1/2}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i + \frac{|K_{\lfloor nt \rfloor}|}{n^{1/2}} \sum_{i \in K_{\lfloor nt \rfloor}} \frac{(\gamma_i - \xi_i)}{|K_{\lfloor nt \rfloor}|}.
$$

We remember that

$$
\frac{1}{n^{1/2}}\sum_{i=1}^{\lfloor nt \rfloor} 1_{\{U_i \le i^{-1/2}\}} - \frac{|F_{\lfloor nt \rfloor}|}{n^{1/2}} \preceq \frac{|K_{\lfloor nt \rfloor}|}{n^{1/2}} \preceq \frac{|J_{\lfloor nt \rfloor}|}{n^{1/2}}.
$$

Rodrigo B. Alves [GERW in Bernoulli environment](#page-0-0) May/2022 30

Idea of the coupling

Let Y be a p_n -ERW in direction e_3 and Z is a lazy random walk in \mathbb{Z}^2 . For all $j \in \{1,2\}$ and $i \geq 0$, $Y_i \cdot e_j = Z_i \cdot e_j$.

Lemma

If the process $\{Z_i\}_{i\geq 0}$ visits a new site then $\{Y_i\}_{i\geq 0}$ visits too.

As a direct consequence we obtain that $|\mathcal{R}_n^Y| \geq |\mathcal{R}_n^Z|$ for all $n \geq 0$.

Rodrigo B. Alves [GERW in Bernoulli environment](#page-0-0) May/2022 31

We set
$$
|J'_n| := \sum_{i=1}^{\delta n} 1_{\{U_i \leq i^{-1/2}\}}
$$
 where $\delta \in (\pi_d, 1]$ and obtain

$$
\mathbb{P}[|J_n| \le |J'_n|] = 1 \quad \text{as } n \to \infty \, .
$$

By the coupling we have $|F_n| \leq \sum_{i=1}^{n-|\mathcal{R}_n^Z|} 1_{\{U_i \leq i^{-1/2}\}}$ for all $n \geq 1$, where Z is the lazy random walk define in the coupling in \mathbb{Z}^{d-k} .

We define $|F'_n| := \sum_{i=1}^{n-\delta'n} 1_{\{U_i \leq i^{-1/2}\}}$ where $\delta' \in (0, \pi_{d-k})$ and by Hamana and Kesten '01 we obtain

$$
\mathbb{P}[|F_n| \le |F'_n|] = 1 \quad \text{as } n \to \infty \, .
$$

• Thus as $n \to \infty$ we have

$$
\begin{split} &\mathbb{P}\left[\forall t\in[0,\infty):\frac{\sum_{i=1}^{\lfloor nt\rfloor}1_{\{U_i\leq i^{-1/2}\}}}{n^{1/2}}-\frac{|F'_{\lfloor nt\rfloor}|}{n^{1/2}}\leq\frac{|K_{\lfloor nt\rfloor}|}{n^{1/2}}\right]\to 1\\ &\mathbb{P}\left[\forall t\in[0,\infty):\frac{|K_{\lfloor nt\rfloor}|}{n^{1/2}}\leq\frac{|J'_{\lfloor nt\rfloor}|}{n^{1/2}}\right]\to 1\quad\text{and consequently}\\ &\mathbb{P}\left[\forall t\in[0,\infty):2t^{1/2}(1-(1-\delta')^{1/2})\leq\frac{|K_{\lfloor nt\rfloor}|}{n^{1/2}}\leq2(t\delta)^{1/2}\right]\to 1\,, \end{split}
$$

Then for every limit point Y of a sub-sequence of B^n , we obtain $W_t \cdot \ell_{D_k} + 2(1 - (1 - \delta')^{\frac{1}{2}})\mu_\gamma t^{\frac{1}{2}} \preceq Y_t \cdot \ell_{D_k} \preceq W_t \cdot \ell_{D_k} + 2\mu_\gamma \delta^{\frac{1}{2}} t^{\frac{1}{2}}.$

Conjecture

Let X be a p_n -ERW in direction $\ell \in \mathbb{S}^{d-1}$, in \mathbb{Z}^d with $d \geq 2$, $p_n = Cn^{-\beta} \wedge 1$, with $\beta \geq 1/2$. Then we have

$$
\frac{|\mathcal{R}_n^X|}{n} \to \pi_d \quad as \; n \to \infty \; a.s..
$$

where π_d is corresponding to $\{\xi_i\}_{i\geq 0}$.

Note that for $d = 2$, we have that $\pi_d = 0$, whereas for $d \geq 3$, $\pi_d \in (0, 1]$.

Let X be a p_n -GERW in direction $\ell, d \geq 2$ and with $\beta < 1/6$. Then

$$
\mathbb{P}[\eta(X_0)=\infty]\geq \psi>0.
$$

- We prove the range of the p_n -GERW is large enough
- Under certain conditions we have that the p_n -GERW in ℓ direction with high probability

$$
\mathbb{P}\left[X_n \cdot \ell < \frac{1}{3}\lambda n^{\frac{1}{2} + \alpha - \beta}\right] < 6n \exp(-\vartheta_1 n^{\vartheta_2}).
$$

• Then using the uniformly elliptic condition

References

- 1) On a general many-dimensional excited random walk (2012) Menshikov, M., Popov, S., Ramírez, A. F. and Vachkovskaia, M. The Annals of Probability
- 2) Excited random walk (2003) Benjamini, I. and Wilson, D. Electronic Communications in Probability
- 3) Excited random walk in three dimensions has positive speed (2003) Kozma, G., arXiv preprint math/0310305
- 4) Excited random walk in two dimensions has linear speed (2005) Kozma, G., arXiv preprint math/0512535
- 5) CLT for excited random walk in dimension $d \ge 2$ (2007) Bérnard, J. and Ramírez, A. F. Electronic Communications in Probability
- 6) A large-deviation result for the range of random walk and for the wiener sausage (2001) Hamana, Y. and Kesten, H. Probability Theory and Related Fields

For any $\varepsilon > 0$, we set the event $G := \{ |J_{\lfloor nT \rfloor}| > \varepsilon \sqrt{n} \}$. Then for a $\delta > 0$, we have that

$$
\mathbb{P}\left[\sup_{0\leq t\leq T}|J_{\lfloor nt\rfloor}| > \varepsilon\sqrt{n}\right] =
$$
\n
$$
= \mathbb{P}[G \cap \{|\mathcal{R}^{X}_{\lfloor nT\rfloor}| > \delta\lfloor nT\rfloor\}| + \mathbb{P}[G \cap \{|\mathcal{R}^{X}_{\lfloor nT\rfloor}| \leq \delta\lfloor nT\rfloor\}]
$$
\n
$$
\leq \mathbb{P}[\left|\mathcal{R}^{X}_{\lfloor nT\rfloor}| > \delta\lfloor nT\rfloor] + \frac{1}{\varepsilon\sqrt{n}} \sum_{i=1}^{\lceil \delta nT\rceil} \frac{1}{i^{1/2}}.
$$

• Hence we obtain that Hence we obtain that
 $\limsup_{n\to\infty} \mathbb{P}\left[\sup_{0\leq t\leq T} |J_{\lfloor nt\rfloor}| > \varepsilon\sqrt{n}\right] \leq c'(\delta T)^{\frac{1}{2}}/\varepsilon.$

Idea of the proof of the upper bound to the range of p_n -ERW in $d > 2$ and $\beta = 1/2$

Denote
$$
\{N_i\}_{i\geq 0}
$$
 as the sequence of times such that
\n $N_i = \inf\{k > N_{i-1} : Z_k = 1\}$, where $Z_k \sim Bern(k^{-\frac{1}{2}})$ and
\n $M_n = \inf\{i \geq 1 : \sum_{j=1}^i \Delta N_j \geq n\}$.

Let $\varepsilon \in (0,1)$ and we define $N_0 \equiv n^{\varepsilon}$.

$$
|\mathcal{R}_n^X| \le n^{\varepsilon} + M_n + \sum_{j=1}^{M_n} |\mathcal{R}_{[N_{j-1}+2,N_j]}^Y|,
$$

where Y is a random walk whose increments are defined by $\{\xi_i\}_{i\geq 1}$. Fix any $k \in \{1, 2, \ldots, n\}$ and define $A_{n,k} := \{j \in \{1, 2, ..., M_n\} : \Delta N_j \leq k\},$ clear $M_n \leq |A_{n,k}| + n/k$. Then $|\mathcal{R}_n^X| \leq n^{\varepsilon} + \frac{n}{k}$ $\frac{n}{k} + k |A_{n,k}| + \sum_{i \in A^c} |\mathcal{R}_{[N_{j-1}+2,N_j]}^Y|.$ $j \in A_{n,k}^c$

For a sufficiently large integer m , consider the event

$$
U_0 = \left\{ (X_{k+1} - X_k) \cdot \ell \ge r , \text{ for all } k = 0, 1, ..., \lceil r^{-1} \rceil m - 1 \right\}.
$$

We denote the time translation of $X:W_k=X_{\lceil r^{-1}\rceil m+k}, k\geq 0$. Then W is a p_n -GERW with $A' = \mathbb{Z}^d / \{X_0, \ldots, X_{\lceil r^{-1} \rceil m - 1}\}$ starting at $W_0 = X_{[r^{-1}]m}$ and for some k, we have $p_k = (q_0 + [r^{-1}]m + k)^{-\beta}$.

Now we set $m = (C/[\tau^{-1}]) (3/\lambda)^{\frac{1}{\delta-1}}$ where $\delta = (2 - \theta) (1/2 + \theta) > 1$, $\theta = \alpha - \beta$ and C is a positive constant, depending on α , β , q_0 , K , λ and r.

For every $k \geq 1$ consider the following events

$$
G_k = \left\{ \min_{\substack{\lfloor m_{k-1}^{2-\theta} \rfloor < j \leq m_k^{2-\theta} \\ U_k = \left\{ W_{\lfloor m_k^{2-\theta} \rfloor} \cdot \ell \geq m_{k+1} \right\} \\ }} W_k = \left\{ W_{\lfloor m_k^{2-\theta} \rfloor} \cdot \ell \geq m_{k+1} \right\} .
$$

Where we denote $m_0 = 0, m_1 = m$ and, for $k \ge 1, m_{k+1} = \frac{1}{3}$ $\frac{1}{3}\lambda m_k^{\delta}$. We show that

$$
\{X_n \cdot \ell > 0, \text{ for all } n \geq 1\} \supset \left(\bigcap_{k=1}^{\infty} \left(G_k \cap U_k\right)\right) \cap U_0 \; .
$$

Since $\mathbb{P}[(\bigcap_{k=1}^{\infty} (G_k \cap U_k)) \cap U_0] = \mathbb{P}[U_0] (1 - \sum_{k=1}^{\infty} \mathbb{P}[G_k^c | U_0] + \mathbb{P}[U_k^c | U_0])$

Controlling the probabilities:

• By the uniform ellipse condition,

$$
\mathbb{P}\left[U_0\right] \ge h^{\lceil r^{-1} \rceil m}.
$$

• By union bounds and Azuma's inequality:

$$
\mathbb{P}[G_k|U_0] \ge 1 - m_k^{2-\theta} e^{-\frac{m_k^{\theta}}{2K^2}}.
$$

By Proposition 4:

$$
\mathbb{P}[U_k|U_0] = \mathbb{P}\left[W_{\lfloor m_k^{2-\theta}\rfloor} \cdot \ell \ge \frac{\lambda}{3} m_k^{(2-\theta)(\frac{1}{2}+\theta)}\right] \ge 1 - 6e^{-\vartheta_1 m_k^{(2-\theta)\vartheta_2}}.
$$