# Al buio non si trova:

Principled phylodynamics for pandemic preparation

Luiz Max Carvalho



# Acknowledgments



Andrew Rambaut UoE



Guy Baele KU Leuven



Marc Suchard UCLA



Rodrigo B. Alves FGV EMAp



Remco Bouckaert Auckland



Cristiana Couto
ICMC USP

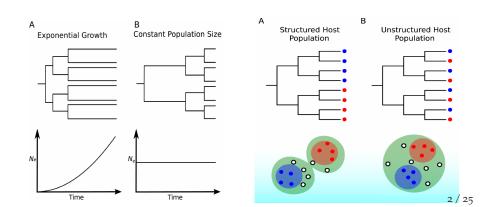
### Motivation

### Phylodynamics of fast-evolving viruses

Inferring spatial and temporal dynamics from genomic data:

# Phylogenies\*!

\* plus complicated models



# Plan for today

### Statistical Problem(s)

Central object, inference, algorithms

### Principled priors

Being Bayesian is great, but it ain't free

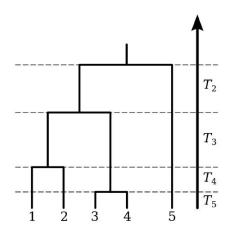
### MCMC in tree space

A journey through a strange land

### How to tell if phylogenetic MCMC

- A) Is correct;
- B) Works better than the state-of-the-art.

### Central object: time-calibrated trees



Let  $T_n$  denote the time for n lineages to *coalesce*, i.e., merge into one ancestral lineage, in a population of size  $N_{\ell}$ . Then:

$$\begin{split} \Pr(T_n = t) &= \lambda_n e^{-\lambda_n t} \\ \lambda_n &= \binom{n}{2} \frac{1}{N_e} = \binom{n}{2} \frac{1}{\theta \tau} \end{split}$$

where  $N_\ell$  is the effective population size and  $\tau$  is the generation time. Let  $T_{mrca}$  denote the age of the most recent common ancestor:

$$E[T_{\text{mrca}}] = E[T_n] + E[T_{n-1}] + \dots + E[T_2]$$
$$= 1/\lambda_n + 1/\lambda_{n-1} + \dots + 1/\lambda_2$$
$$= 2N_e \left(1 - \frac{1}{n}\right)$$

Figure: Figure 4 from Volz et al. (2013).

# "Just chuck any prior"

Consider:

$$t_k \mid N_e \sim \text{Exponential}\left(\binom{n}{2} \frac{1}{N_e}\right).$$

If you pick  $\pi_N(N_e) \propto 1/N_e$ , i.e. the Jeffreys's-type prior, you get that the marginal prior for  $t_k$  is  $\pi_T(t_k) \propto 1/t_k$ .

$$P(t_k) = \exp(t_k Q) = \sum_{i=0}^{\infty} \frac{(t_k Q)^i}{i!}.$$

#### Lemma

If Q is diagonalisable, the <u>posterior</u> for  $t_k$  is improper<sup>1</sup> under a Jeffreys's prior for  $N_e$ .

<sup>&</sup>lt;sup>1</sup>A measure-theoretic proof of a very similar result is given in the Appendix of Drummond et al. (2004).

# ♪Smooth operator ♪

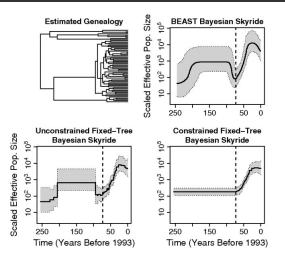


Figure: HCV in Egypt <sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>Minin et al. (2008). See also Karcher et al. (2020)

### Gaussian Markov random fields to the rescue

Denote the population sizes by  $\theta = (\theta_2, \dots, \theta_n)$ , the likelihood becomes

$$\Pr(s|\theta) = \prod_{k=2}^{n} \frac{n_{k0}(n_{k0} - 1)}{2\theta_k} \exp\left(-\sum_{j=0}^{j_k} \frac{n_{kj}(n_{kj} - 1)s_{kj}}{2\theta_k}\right),$$

$$\Pr(\gamma|\tau) \propto \tau^{(n-2)/2} \exp\left(-\frac{\tau}{2} \sum_{k=2}^{n-1} \frac{(\gamma_{k+1} - \gamma_k)^2}{\delta_k}\right),$$

where  $\gamma_k = \log(\theta_k)$ , k = 2, ..., n,  $\delta_k$  is the (1d) distance between intervals and  $\tau$  is the precision parameter associated with the smoothing.

# Penalising complexity

Simpson et al. (2017) propose proper priors that penalise deviations from a simple base model ("complexity"). For the GMRF precision, this prior is a Gumbel type II family:

$$\pi_2(\tau \mid a, b) = ab \cdot \tau^{-a-1} \exp(-b\tau^{-a}), \ \tau > 0.$$
 (1)

We set a = 1/2 and b such that  $\Pr(1/\sqrt{\tau} > S) = p$ , where the value S and the probability p are to be chosen on substantive grounds – e.g. S = 1 and p = 0.1. We can then find  $b = -\ln(p)/S$ .

# Some reconstructions <u>are</u> sensitive to the prior

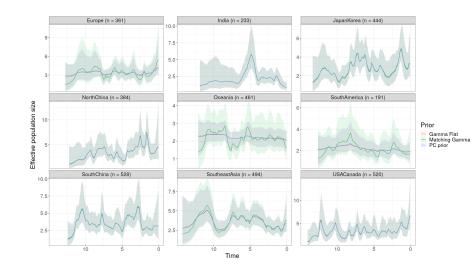


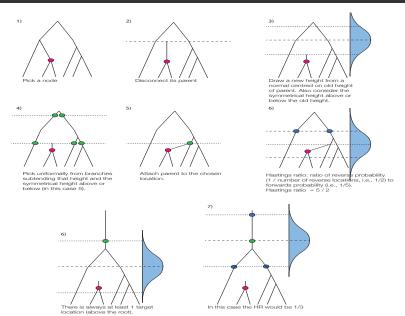
Figure: Regional Influenza

# The phylogenetic target

$$p(t, b, \omega | D) = \frac{f(D|t, b, \omega)\pi(t, b, \omega)}{\sum_{t_i \in T_n} \int_{B} \int_{\Omega} f(D|t_i, b_i, \omega)\pi(t_i, b_i, \omega)d\omega db_i}.$$
 (2)

- ⊚ D: observed sequence (DNA) data;
- ⊚  $T_n$ : set of all binary ranked trees ( $\mathbb{G}^{(2n-3)!!}$ );
- ⊚  $b_k$ : set of branch lengths of  $t_k \in T_n$  ( $\mathbb{R}^{2n-2}_+$ , kind of);

# Traversing treespace: SubTreeLeap (STL)



# STL ergodicity

Carvalho (2019), Chapter 2.

### Lemma

Assume strictly positive branch lengths. Then SubTreeLeap induces an irreducible Markov chain on G.

**Sketch**: Starting at  $x \in \mathbb{G}$ , notice there exists  $\delta_y^* > 0$  such that  $P\left(x \to y \mid \delta_y^*\right) > 0$  for any tree  $y \in \mathbb{G}$  in the SPR neighbourhood of x.

#### **Theorem**

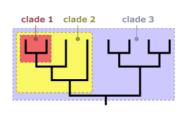
Assume the target satisfies p(A) > 0 for all  $A \subset \Psi$ . Then, SubTreeLeap induces an ergodic Markov chain on  $\Psi$ .

**Sketch**: Employ the remark to get to the case where  $d_{SPR}(x, y) = 0$  and then establish Harris recurrence.

### A lower-dimensional projection

A clade is a partition of the set of leaves and two clades  $A = A_1|A_2$  and  $B = B_1|B_2$  are said to be compatible if at least one of  $A_i \cap B_j$ , i, j = 1, 2 is empty. Here's a picture<sup>3</sup>:





<sup>&</sup>lt;sup>3</sup>Pictures taken from Wikipedia and from https:

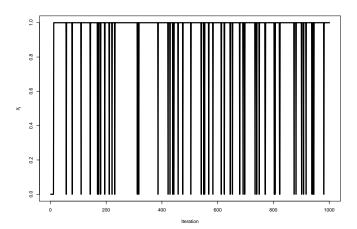
# Why clades?

- **⊙ Dimension!**  $|\mathbb{T}_n| = (2n-3)!! \ vs \ |\mathbb{C}_n| = 2^{n-1} 1$
- O Interpretability;
- Under simplifying assumptions, clades are independent (Larget, 2013<sup>4</sup>);
- Clade distribution is known under popular prior distributions.

<sup>4</sup>but see Whidden & Matsen, 2015 and Zang & Matsen, 2018.

### Clade indicators during MCMC

Let  $X_j^{(i)} \in \{0, 1\}$  be the indicator of whether clade j in the tree sampled at the i-th iteration and  $\hat{p}_j = M^{-1} \sum_{i=1}^M X_j^{(i)}$  be a simple MCMC estimator of its marginal success probability.



# Playing pretend

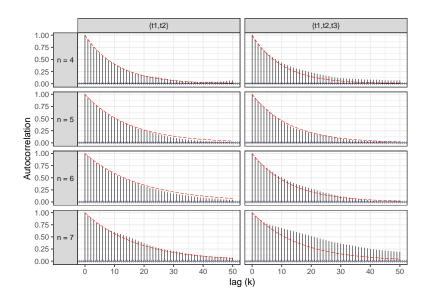
Pretend for a second  $\left(X_{j}^{(i)}\right)_{i\geq 0}$  is Markov on  $\mathfrak{X}=\{0,1\}$  and reparametrise the usual two-state model as

$$\tilde{P}_{x} := \begin{bmatrix} 1 - \alpha & \alpha \\ \alpha \frac{1 - p}{p} & \frac{p - \alpha(1 - p)}{p} \end{bmatrix}, \tag{3}$$

where p is the marginal success probability and a  $\alpha$  controls the "flipping rate" of the chain. Then

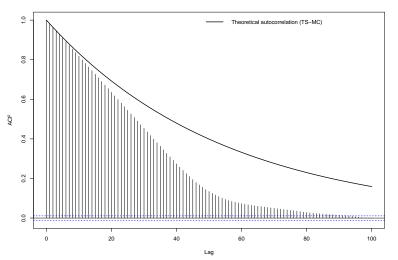
ESS = 
$$\frac{M}{1 + 2\sum_{t=1}^{\infty} \rho_t}$$
,  
=  $\frac{M}{1 + 2\frac{p-\alpha}{\alpha}}$ ,  
=  $\frac{\alpha}{2p - \alpha}M$ .

# Lumpability in clade space



# Doesn't always work





### Measuring efficiency

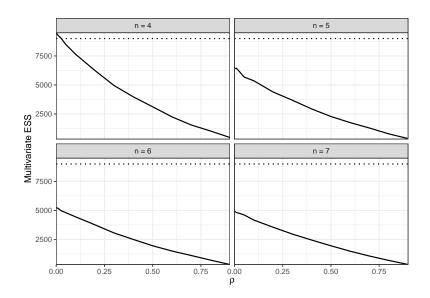
Thus, we can employ the idea from Vats, Flegal & Jones (2019): Magee et al, 2021 point out that trees are fundamentally multivariate objects.

$$mESS = M \left( \frac{\det(\Lambda)}{\det(\Sigma)} \right)^{1/p}.$$

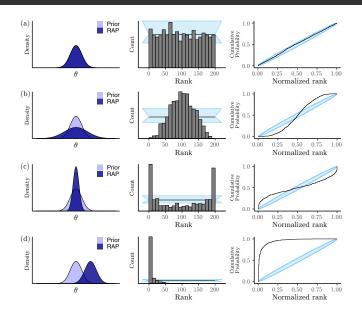
```
> ( evals.naive <- eigen(cov.dep, only.values = TRUE)$values )
[1] 2.460008e-01 2.357391e-01 2.161817e-01 1.374673e-01 8.833706e-02 7.734214e-02
[7] 5.809434e-02 3.283007e-02 1.535663e-02 8.976874e-03 3.982149e-03 2.242468e-03
[13] 1.437667e-03 6.836824e-04 4.688762e-04 3.356731e-04 1.117728e-17 4.321235e-18
[19] 1.419069e-18 5.143897e-20 -1.708911e-19 -1.086942e-18 -8.299469e-18 -3.081920e-17
> ( evals.robust <- eigen(robust.cov.dep, only.values = TRUE)$values )
[1] 2.459980e-01 2.357382e-01 2.161232e-01 1.374668e-01 8.833950e-02 7.738005e-02
[7] 5.809705e-02 3.281389e-02 1.535756e-02 8.976479e-03 3.981357e-03 2.244039e-03
[13] 1.442280e-03 6.864393e-04 4.714446e-04 3.383832e-04 4.970055e-06 4.970055e-06
[19] 4.970055e-06 2.988021e-06 9.980030e-07 9.980030e-07 9.980030e-07 9.980030e-07
```

Figure: Eigenvalues can be numerically unstable.

# True mESS



### Simulation-based calibration

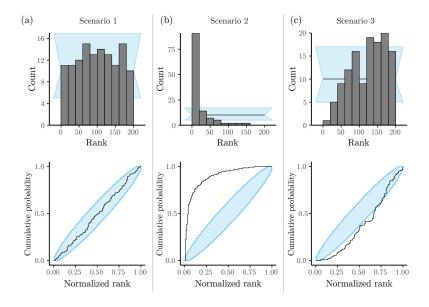


### SBC for trees

See Mendes et al. (2024) for more details.

- o. Generate a reference tree from the prior  $\bar{\tau}_0 \sim \pi_T(\tau|\gamma)$ ; **for** each iteration in 1:N, **do**:
- 1. Generate  $\bar{\tau} \sim \pi_T(\tau|\gamma)$ ;
- 2. Compute the distance  $\bar{\delta} = d_{\sigma}(\bar{\tau}, \bar{\tau}_0)$  according to the metric of choice;
- 3. Generate some (alignment) data  $\tilde{y} \sim p(y|\bar{\tau}, \alpha)$ ;
- 4. Draw (approximately)  $\tau_s = \{\tau_s^{(1)}, \tau_s^{(2)}, \dots, \tau_s^{(L)}\}$  from the posterior  $\pi(\tau|\tilde{y})$ ;
- 5. Compute distances  $\delta_s = \{\delta_1, \delta_2, \dots, \delta_L\}$  with  $\delta_i = d_{\sigma}(\tau_s^{(i)}, \bar{\tau}_0);$
- 6. Compute the rank  $r(\delta_s, \bar{\delta}) = \sum_{i=1}^{L} \mathbb{I}(\delta_i < \bar{\delta})$ .

### Simulation-based calibration: results



### Take home

### Principled priors

Prior calibration, proper priors for generative modelling.

### Principled simulation methods

Ascertaining correctness and efficiency

### Major methodological challenges (as I see them)

- A) Thinking carefully about priors, especially as regularisers;
- B) Efficient (preferrably on-line) methods for phylogeny reconstruction;
- C) Incorporate mathematical models to link to other data (model-driven data integration).

THE END