Al buio non si trova:
Principled phylodynamics for pandemic preparation

Luiz Max Carvalho
-FGV EMAp

Acknowledgments

Andrew Rambaut UoE

Rodrigo B. Alves FGV EMAp

Guy Baele KU Leuven

Remco Bouckaert
Auckland

Marc Suchard UCLA

Cristiana Couto ICMC USP

Motivation

Phylodynamics of fast-evolving viruses

Inferring spatial and temporal dynamics from genomic data:

Phylogenies*!
 * plus complicated models

Plan for today

Statistical Problem(s)

Central object, inference, algorithms

Principled priors

Being Bayesian is great, but it ain't free

MCMC in tree space

A journey through a strange land
How to tell if phylogenetic MCMC
A) Is correct;
B) Works better than the state-of-the-art.

Central object: time-calibrated trees

Let T_{n} denote the time for n lineages to coalesce, i.e., merge into one ancestral lineage, in a population of size N_{e}. Then:

$$
\begin{aligned}
\operatorname{Pr}\left(T_{n}=t\right) & =\lambda_{n} e^{-\lambda_{n} t} \\
\lambda_{n} & =\binom{n}{2} \frac{1}{N_{e}}=\binom{n}{2} \frac{1}{\theta \tau}
\end{aligned}
$$

where N_{e} is the effective population size and τ is the generation time. Let T_{mrca} denote the age of the most recent common ancestor:

$$
\begin{aligned}
E\left[T_{\mathrm{mrca}}\right] & =E\left[T_{n}\right]+E\left[T_{n-1}\right]+\ldots+E\left[T_{2}\right] \\
& =1 / \lambda_{n}+1 / \lambda_{n-1}+\ldots+1 / \lambda_{2} \\
& =2 N_{e}\left(1-\frac{1}{n}\right)
\end{aligned}
$$

Figure: Figure 4 from Volz et al. (2013).

"Just chuck any prior"

Consider:

$$
t_{k} \left\lvert\, N_{e} \sim \operatorname{Exponential}\left(\binom{n}{2} \frac{1}{N_{e}}\right) .\right.
$$

If you pick $\pi_{N}\left(N_{e}\right) \propto 1 / N_{e}$, i.e. the Jeffreys's-type prior, you get that the marginal prior for t_{k} is $\pi_{T}\left(t_{k}\right) \propto 1 / t_{k}$.

$$
\boldsymbol{P}\left(t_{k}\right)=\exp \left(t_{k} \boldsymbol{Q}\right)=\sum_{i=0} \frac{\left(t_{k} \boldsymbol{Q}\right)^{i}}{i!}
$$

Lemma

If Q is diagonalisable, the posterior for t_{k} is improper ${ }^{1}$ under a Jeffreys's prior for N_{e}.
> ${ }^{1}$ A measure-theoretic proof of a very similar result is given in the Appendix of Drummond et al. (2004).

৯Smooth operator 」

Estimated Genealogy

Figure: HCV in Egypt ${ }^{2}$.

[^0]
Gaussian Markov random fields to the rescue

Denote the population sizes by $\boldsymbol{\theta}=\left(\theta_{2}, \ldots, \theta_{n}\right)$, the likelihood becomes

$$
\begin{aligned}
& \operatorname{Pr}(s \mid \theta)=\prod_{k=2}^{n} \frac{n_{k 0}\left(n_{k 0}-1\right)}{2 \theta_{k}} \exp \left(-\sum_{j=0}^{j_{k}} \frac{n_{k j}\left(n_{k j}-1\right) s_{k j}}{2 \theta_{k}}\right) \\
& \operatorname{Pr}(\gamma \mid \tau) \propto \tau^{(n-2) / 2} \exp \left(-\frac{\tau}{2} \sum_{k=2}^{n-1} \frac{\left(\gamma_{k+1}-\gamma_{k}\right)^{2}}{\delta_{k}}\right)
\end{aligned}
$$

where $\gamma_{k}=\log \left(\theta_{k}\right), k=2, \ldots, n, \delta_{k}$ is the (1d) distance between intervals and τ is the precision parameter associated with the smoothing.

Penalising complexity

Simpson et al. (2017) propose proper priors that penalise deviations from a simple base model ("complexity"). For the GMRF precision, this prior is a Gumbel type II family:

$$
\begin{equation*}
\pi_{2}(\tau \mid a, b)=a b \cdot \tau^{-a-1} \exp \left(-b \tau^{-a}\right), \tau>0 . \tag{1}
\end{equation*}
$$

We set $a=1 / 2$ and b such that $\operatorname{Pr}(1 / \sqrt{\tau}>S)=p$, where the value S and the probability p are to be chosen on substantive grounds - e.g. $S=1$ and $p=0.1$. We can then find $b=-\ln (p) / S$.

Some reconstructions are sensitive to the prior

Figure: Regional Influenza

The phylogenetic target

$$
\begin{equation*}
p(t, \boldsymbol{b}, \omega \mid D)=\frac{f(D \mid t, \boldsymbol{b}, \boldsymbol{\omega}) \pi(t, \boldsymbol{b}, \boldsymbol{\omega})}{\sum_{t_{i} \in \boldsymbol{T}_{n}} \int_{B} \int_{\Omega} f\left(D \mid t_{i}, \boldsymbol{b}_{i}, \boldsymbol{\omega}\right) \pi\left(t_{i}, \boldsymbol{b}_{i}, \boldsymbol{\omega}\right) d \boldsymbol{\omega} d \boldsymbol{b}_{i}} . \tag{2}
\end{equation*}
$$

© D : observed sequence (DNA) data;
© T_{n} : set of all binary ranked trees $\left(\mathbb{G}^{(2 n-3)!!}\right)$;
© \boldsymbol{b}_{k} : set of branch lengths of $t_{k} \in T_{n}\left(\mathbb{R}_{+}^{2 n-2}\right.$, kind of) ;
© $\boldsymbol{\omega}$: set of parameters of interest such as substitution model parameters, migration rates, heritability coefficients, etc.

Traversing treespace: SubTreeLeap (STL)

Pick uniformally from branches subtending that height and the symmetrical height above or below (in this case 5).

Attach parent to the chosen location.

STL ergodicity

Carvalho (2019), Chapter 2.

Lemma

Assume strictly positive branch lengths. Then SubTreeLeap induces an irreducible Markov chain on \mathbb{G}.

Sketch: Starting at $x \in \mathbb{G}$, notice there exists $\delta_{y}^{\star}>0$ such that $P\left(x \rightarrow y \mid \delta_{y}^{\star}\right)>0$ for any tree $y \in \mathbb{G}$ in the SPR neighbourhood of x.

Theorem

Assume the target satisfies $p(A)>0$ for all $A \subset \Psi$. Then, SubTreeLeap induces an ergodic Markov chain on Ψ.

Sketch: Employ the remark to get to the case where $d_{\text {SPR }}(x, y)=0$ and then establish Harris recurrence.

A lower-dimensional projection

A clade is a partition of the set of leaves and two clades $A=A_{1} \mid A_{2}$ and $B=B_{1} \mid B_{2}$ are said to be compatible if at least one of $A_{i} \cap B_{j}, i, j=1,2$ is empty. Here's a picture ${ }^{3}$:
clade 1 clade 2
clade 3

[^1]
Why clades?

© Dimension! $\left|\mathbb{T}_{n}\right|=(2 n-3)!!v s\left|\mathbb{C}_{n}\right|=2^{n-1}-1$
© Interpretability;
© Under simplifying assumptions, clades are independent (Larget, 20134);
© Clade distribution is known under popular prior distributions.
but see Whidden \& Matsen, 2015 and Zang \& Matsen, 2018.

Clade indicators during MCMC

Let $X_{j}^{(i)} \in\{0,1\}$ be the indicator of whether clade j in the tree sampled at the i-th iteration and $\hat{p}_{j}=M^{-1} \sum_{i=1}^{M} X_{j}^{(i)}$ be a simple MCMC estimator of its marginal success probability.

Playing pretend

Pretend for a second $\left(X_{j}^{(i)}\right)_{i \geq 0}$ is Markov on $X=\{0,1\}$ and reparametrise the usual two-state model as

$$
\tilde{\boldsymbol{P}}_{x}:=\left[\begin{array}{cc}
1-\alpha & \alpha \tag{3}\\
\alpha \frac{1-p}{p} & \frac{p-\alpha(1-p)}{p}
\end{array}\right],
$$

where p is the marginal success probability and a α controls the "flipping rate" of the chain. Then

$$
\begin{aligned}
\mathrm{ESS} & =\frac{M}{1+2 \sum_{t=1}^{\infty} \rho_{t}}, \\
& =\frac{M}{1+2 \frac{p-\alpha}{\alpha}} \\
& =\frac{\alpha}{2 p-\alpha} M .
\end{aligned}
$$

Lumpability in clade space

Doesn't always work

Fabreti ACT $=50$

Measuring efficiency

Thus, we can employ the idea from Vats, Flegal \& Jones (2019): Magee et al, 2021 point out that trees are fundamentally multivariate objects.

$$
\mathrm{mESS}=M\left(\frac{\operatorname{det}(\boldsymbol{\Lambda})}{\operatorname{det}(\boldsymbol{\Sigma})}\right)^{1 / p}
$$

> (evals.naive <- eigen(cov.dep, only.values $=$ TRUE) \$values)
$[1]$

Figure: Eigenvalues can be numerically unstable.

True mESS

Simulation-based calibration

SBC for trees

See Mendes et al. (2024) for more details.
o. Generate a reference tree from the prior $\bar{\tau}_{0} \sim \pi_{T}(\tau \mid \gamma)$; for each iteration in $1: \mathrm{N}$, do:

1. Generate $\bar{\tau} \sim \pi_{T}(\tau \mid \gamma)$;
2. Compute the distance $\bar{\delta}=d_{\sigma}\left(\bar{\tau}, \bar{\tau}_{0}\right)$ according to the metric of choice;
3. Generate some (alignment) data $\tilde{y} \sim p(y \mid \bar{\tau}, \alpha)$;
4. Draw (approximately) $\tau_{s}=\left\{\tau_{s}^{(1)}, \tau_{s}^{(2)}, \ldots, \tau_{s}^{(L)}\right\}$ from the posterior $\pi(\tau \mid \tilde{y})$;
5. Compute distances $\delta_{s}=\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{L}\right\}$ with $\delta_{i}=d_{\sigma}\left(\tau_{s}^{(i)}, \bar{\tau}_{0}\right) ;$
6. Compute the rank $r\left(\delta_{s}, \bar{\delta}\right)=\sum_{i=1}^{L} \mathbb{a}\left(\delta_{i}<\bar{\delta}\right)$.

Simulation-based calibration: results

Take home

Principled priors

Prior calibration, proper priors for generative modelling.

Principled simulation methods

Ascertaining correctness and efficiency

Major methodological challenges (as I see them)

A) Thinking carefully about priors, especially as regularisers;
B) Efficient (preferrably on-line) methods for phylogeny reconstruction;
C) Incorporate mathematical models to link to other data (model-driven data integration).

THE END

[^0]: ${ }^{2}$ Minin et al. (2008). See also Karcher et al. (2020)

[^1]: ${ }^{3}$ Pictures taken from Wikipedia and from https:
 //evolution.berkeley.edu/evolibrary/news/080301_elephantshrew

